
Inevitable negativity: quantum additivity commands
negative quantum channel entropy

Gilad Gour1, Doyeong Kim2, Takla Nateeboon2,∗, Guy Shemesh1, and Goni Yoeli1
1Department of Mathematics, Technion - Israel Institute of Technology, Haifa, Israel

2Department of Mathematics and Statistics and Institute for Quantum Science and Technology, University of Calgary, Calgary, AB T2N
1N4, Canada

Institute for 

QUANTUM SCIENCE AND TECHNOLOGY
at the University of Calgary

Introduction

In information theory, entropy is a well-established measure of a system’s uncertainty.
A deeper understanding of entropy is built on the concept of majorization, a relation
that compares uncertainty between different states of a system. As channels have be-
come a central focus in modern information theory, multiple channel entropies have
been proposed, but its axiomatic definition has yet to be established. In this study, we
provide a strong conceptual foundation for channel entropy by extending majorization
to classical and quantum channels. Furthermore, we show that the traditional assump-
tion of additivity in entropy inevitably leads to negative values for certain quantum
channels, challenging conventional views on the nature of entropy.

Playing games with probability vectors
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Consider the following game of chance, a player,
Alice, has a memoryless random source (e.g. a
die, a slot machine, or a deck of cards) where
she knows the probability distribution p associ-
ated with the random source. To win the game,
Alice has to guess an outcome within the k num-
ber of guesses correctly. Her chance of winning
is the sum of the probability of the largest k out-
comes. This is called a k-game.

Majorization and uncertainty

Suppose p and q are two probability vectors of n dimensions, we have that p majorizes
q, and write p � q if ‖p‖(k) ≥ ‖q‖(k) for all k = 1, 2, . . . , n, where ‖p‖(k) is the k

th Ky Fan
norm, the sum of the largest k elements of p.

Alternatively, we can also define majorization via a convertibility relation,

q = M(p), (1)

between two probability vectors via a mixing operation M : Prob(n) → Prob(n), i.e. a
stochastic matrix. The mixing operation must not decrease the amount of uncertainty
associated with a probability vector. There are three approaches to define mixing
operations.

Constructive approach: A mixing operation is an operation that is expressible as a
random permutation of outcomes. M =

∑
i piΠi where Πi is a permutation matrix.

Axiomatic approach: A mixing operation is an operation that preserves the most un-
certain probability vector, a uniform vector u(n).

Operational approach: p � q if and only if the winning chance of the vector p is greater
than that of q for any k-games.

These three definitions of majorization coincide. It is known that a stochastic ma-
trix that preserves a uniform vector u(n) is doubly stochastic. From Birkhoff-von Neu-
mann’s theorem [1], any doubly stochastic matrix is a convex sum of permutation ma-
trices. The winning chance for a k-game with probability vector p is a kth Ky Fan norm.
Lastly, the majorization relation defined by Ky Fan norm is equivalence with converta-
bility via doubly stochastic matrix [2].

Quantum channels

A quantum channel describes the transformations and evo-
lution of quantum states, capturing both their static proper-
ties and dynamic behavior. Mathematically, a quantum channel
is represented as a completely positive and trace-preserving
(CPTP) linear map. In the left diagram, a quantum channel
NA→B ∈ CPTP(A → B) maps a quantum state ρA ∈ D(A) to
NA→B(ρA) ∈ D(B).

Three approaches to quantum channel majorization

A linear map between quantum channels is called a superchannel, denoted with Θ.
An action of a superchannel on a channel N is realizable as a composition of pre-
processing and post-processing channels with the channel N .

We define a majorization on the domain of quantum channels via a convertibility rela-
tion between channels. We says a channel N majorizes a channel M, and write N � M
if there is a superchannel Θ such that M = Θ[N ]. The challenge was in how to define
correctly what are mixing operations on the domain of channels. In our work, we de-
fined mixing operations with three conceptually distinct approaches.

Constructive Approach
A mixing operation is a superchannel
realizable with conditionally unital post-
processing channel E . We call a channel E is
conditionally unital whenever

EBR→B(uB ⊗ τR) = uB ∀τ ∈ D(R). (2)

Axiomatic Approach
A mixing operation has to be completely
uniformity-preserving; they must preserve
marginally uniform channels. A marginally
uniform channel, denoted as NAC0→BC1, is a
bipartite channel that always outputs a prod-
uct state where on the system B the state is
maximally mixed, regardless of the input on
AC0.

Operational Approach (classical channels only)
Majorization is defined by comparing the winning chance of all t-games. That is, N �
M if for any t-games, a winning chance with the channel N is larger than that of the
channel M.
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In a t-game, the player has full control over
the input and aims to correctly predict the
output within a randomly selected number
of guesses k. Before choosing an input to
send through the channel, the player re-
ceives a value of w. This value may provide
partial, complete, or no information about
k, depending on the joint probability distri-
bution of w and k represented by t.

We showed that these three approaches coincide. A superchannel is completely
uniformity-preserving if and only if its post-processing channel can be realized us-
ing a conditionally unital channel. In the domain of classical channels, comparisons of
winning chances relate to the existence of a completely uniformity-preserving channel,
which can be expressed as a linear program.

Axiomatic definition of entropy

Similar to the axiomatic definition of quantum state entropy, we defined the entropy of
a quantum channel to be an additive monotone on the majorization relation of quan-
tum channels.
That is a mapping H :

⋃
A,B CPTP(A → B) → R is a quantum channel entropy if it

satisfies the following for any two channels NA→B and MA′→B.

NA→B � MA′→B =⇒ H(B|A)N ≤ H(B|A′)M (3)
H(BB′|AA′)N ⊗M = H(B|A)N ⊗ H(B′|A′)M (4)

Examples of channel entropies

Quantum channel entropy can be derived from channel relative entropy D.
H(B|A)N = log |B| − D(N |R). (5)

The channel relative entropy of channels NA→B and MA→B is defined by a relative
entropy D [3, 4]

D(N |M) := sup
ρ∈D(RA)

D(N (ρ)|M(ρ)). (6)

Another example is a quantum channel entropy derived from the minimization of a
conditional entropy of bipartite quantum states,

H(B|A)N = min
ψ∈PURE(RA)

H(B|R)NA→B(ψRA) (7)

where minimization is also over any system R [5].

Some channels have negative entropy

We found that any isometry channel V ∈ CPTP(A → B) is required to have negative
entropy. In particular,

H(B|A)V = − log |A|. (8)

To put this in context, consider an output system B. Pure states and channels that
consistently produce pure states have zero entropy. In contrast, the maximally mixed
state uB and the maximally randomizing channel RA→B possess the highest entropy.
Negative channel entropy indicates that the channel is even more predictable than a
pure state!

Open questions
Can the operational definition of channel majorization be extended to quantum
channels?
What are the operational meanings for negative entropies?
Are all quantum channel entropies extended from a relative entropy?
Is an extension of a classical state entropy to a classical channel domain unique?
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