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What is uncertainty?

Given a random variable X which has n possible values, {x1, x2,… , xn}.

p = ( 36
1
6

1
6

1
6 0 0)T

⟵ How can we quantify its uncertainty?

(Shannon) Entropy

H(p) = ∑
i∈[n]

−pi log2(pi)

• Dependent on the distribution

• Axiomatically defined using information
processing task

Variance

𝜎2 = 𝔼[X 2 − 𝜇2]

• Dependent on the distribution
and the value of X
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A family of entropies

𝛼-Rényi entropy (𝛼 ∈ ℝ+)

H𝛼(p) =
1

1 − 𝛼
log

(
∑
x∈[n]

p𝛼x)
.

Shannon entropy: H1(p) = −∑y∈[n] py log2(py)

↔ probability of obtaining a long string drawn from an i.i.d.
source = 2−H1(p).

Max-entropy: H0(p) = log2 |supp(p)|
↔ number of possibilities = 2H0(p).

Min-entropy: H∞(p) = − log2(maxy∈[n] py)
↔ probability of giving a correct guess of an outcome =
2−H∞(p)

Denoted by supp(p) =
{
y ∶ py ≠ 0

}
is a set of outcomes y with non-zero probability.
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Entropy and uncertainty

Shannon entropy

H(p) = −∑
x∈

px log px .

𝛼-Rényi entropy (𝛼 ∈ ℝ+)

H𝛼(p) =
1

1 − 𝛼
log

(
∑
x∈[n]

p𝛼x)
.

The least uncertained distribution: If p = e1 = (1, 0,… , 0)T , knowing the value of X with
certainty,

H(e1) = H𝛼(e1) = 0. ← the least entropy can be.

The most uncertained distribution: If p = u(n) = 1
n (1, 1,… , 1)T , every outcome is equally

likely,
H(u(n)) = H𝛼(u(n)) = log(n). ← the most entropy can be.

Nice common properties: non-negative, additive, invariant with permutation and adding zero.
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Classical states

• A die rolled a five,

p = (0 0 0 0 1 0)T

• A fair die is tossed,

p = (1/6 1/6 1/6 1/6 1/6 1/6)
T
.

Statics

Classical channels

• sending a bit through a telephone line,

 =
(
1 0
0 1)

 =
(
0.9 0.2
0.1 0.8)

• tossing a fair die,

p = (1/6 1/6 1/6 1/6 1/6 1/6)
T
.

Dynamics

Question: can we have entropy for classical channels as well?
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Question: can we have entropy for classical channels as well?

Classical channel entropyClassical entropy
extension

Probability vector
majorization

axiomatic definition

Channel majorization

axiomatic definition

Gambling games

characterization

Gambling games
with channels

definition

1

2
3

4

5
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Axiomatic definition of classical state entropy

Def. An entropy is a function H ∶ ProbabilityVectors → ℝ+ such that

1. it is an antitone under majorization relation
2. it is additive under a (Kronecker) tensor product

Majorization (≻) is a preorder on the set of probability vectors.
Def. p ≻ q if for any k ∈ [n] the sum of k largest elements of p is larger or equal to that of q.

p ≻ q

p is more certain than q

⟹ H(p) ≤ H(q)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

being antitone

Additivity under tensor product: two independent random variables X ∼ p, Y ∼ q has a joint
probability vector p ⊗ q. Additivity means

H(p ⊗ q) = H(p) + H(q)
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Majorization and uncertainty

p = ( 36
1
6

1
6

1
6 0 0)T

k-game: within k guesses, correctly guess the value of a random variable X ∼ p.

p ≻ q is equivalent to p is at more or equally likely to win any k-game than with q.

Examples,

(1, 0, 0)T ≻ (
2
3
,
1
3
, 0)T ≻ (

1
2
,
1
2
, 0)T ≻

1
3
(1, 1, 1)T .

(1, 0, 0)T is called the maximal element as it majorizes everything.
1
3 (1, 1, 1)

T is called the minimal element as it is majorized by all vector in Prob(3).
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Extending game to classical channel

Goal: guess the value of the output of a channel within k guesses.
The player can pick any input x but k is randomly picked.

k guesses 

for yAlice

Alice

House

k guesses 

for yAlice

Alice

House

k guesses 

for yAlice

Alice

House

t

The player knows prior to giving input x

• transition matrix N associated with the channel  and

• Probability to have k number of guesses.
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Alice

House

t
The player knows prior to giving input x

• transition matrix N associated with the channel  and

• Probability to have k number of guesses.
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Let’s play the game

Goal: guess the value of the output of a channel within k guesses.

k guesses 

for yAlice

Alice

House

k guesses 

for yAlice

Alice

House

k guesses 

for yAlice

Alice

House

t

N =
⎡
⎢
⎢
⎢
⎣

0.7 0.4 ← a
0.15 0.1 ← b
0.15 0.5 ← c

⎤
⎥
⎥
⎥
⎦

↑ ↑
x = 1, 2

k Pick x Guess y Winning Rate

1 1 a 70%
2 2 a and c 90%

1 (50%), 2 (50%) 1 a and b 77.5%
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Majorization of classical channels

Goal: guess the value of the output of a channel within k guesses.
The player can pick any input x but k is randomly picked.

k guesses 

for yAlice

Alice

House

k guesses 

for yAlice

Alice

House

k guesses 

for yAlice

Alice

House

t
Suppose  X→Y and X ′→Y two classical channels.  ≻  if

for any distribution of k, the winning chance with channel  is higher.
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Extending majorization to channels

This extended relation

1. defines uncertainty inherent in classical channel,

2. reduces to probability vector majorization on replacement channel,

Classical channels

Probability vectors/ replacement channels

q
p

3. has an identity channel as a maximal element, and

4. has a maximally randomizing channel as a minimal element.
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Question: can we have entropy for classical channels as well?

Classical channel entropyClassical entropy
extension

Probability vector
majorization

axiomatic definition

Channel majorization

axiomatic definition

Gambling games

characterization

Gambling games
with channels

definition

1

2
3

4

5
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Channel entropy

Definition. An entropy is a function H ∶ ClassicalChannel → ℝ+ such that

1. it is an antitone under Channel majorization relation,

 ≻  ⟹ H( ) ≤ H(),

2. it is additive under a tensor product,

H( ⊗) = H( ) + H().

Existence?
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Optimal extensions of an antitone

Maximal extension:

entropy of the least noisy probability vector that is still more noisy than
the channel.

ℍ( ) = inf
q∈Prob(m)

m∈ℕ

{
ℍ(q) ∶  ≻ q

}

Minimal extension:

entropy of the most noisy probability vector that is still less noisy than the
channel.

ℍ( ) = sup
p∈Prob(m)

m∈ℕ

{
ℍ(p) ∶ p ≻ 

}

Classical channels
Probability vectors

q
p

En
tr

op
y

Gour, G. and Tomamichel, M. “Optimal extensions of resource measures and their applications”. In: Phys. Rev. A 102 6 062401 (2020)
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Examples of classical channel entropy

The maximal extension of a Rényi entropy H𝛼 is additive and it is the min-entropy output,

ℍ( ) = min
y∈[m]

ℍ(py) (1)

where py ≝  (ey).

𝛼-Rényi entropies

H𝛼(p) =
1

1 − 𝛼
log

(
∑
y∈[n]

p𝛼y)
.

Denoted by supp(p) =
{
y ∶ py ≠ 0

}
is a set

of outcomes y with non-zero probability.

Unique entropy extensions

Max-entropy → H0(p) = log |supp(p)|,

Shannon entropy → H1(p) = − ∑
y∈[n]

py log(py),

Min-entropy → H∞(p) = − log(max
y∈[n]

py).
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Nonexample: entropy of the Choi state

Suppose that  ∈ CPTP(X → Y ) and J ∈ L(XY ) is its Choi matrix and Ĵ to be the
normalized Choi matrix. A function f of  is defined by

f ( ) = H(Ĵ) − log(|X |)

where H is a von Neumann entropy. The function f is purposed to be an entropy function[1,2].

Choi state
In probability vector representation,

Ĵ = ∑
x∈[n]

1
n

ex ⊗ (ex).

A classical state that correlate each choice of
input with its output.

f is not a channel entropy

e1 ∼ (e1,p) for any probability vector p.
If H is a channel entropy, then

H(e1) = H(e1,p).

However, there is p such that f (e1) ≠ f (e1,p).

[1] J. Czartowski, D. Braun, and K. Życzkowski. “Trade-off relations for operation entropy of complementary quantum channels”. Int. J. Quantum Inf. 17 05 1950046 (2019).
[2] Y. Chu et al. “An entropy function of a quantum channel”. Quantum Inf. Process. 22 1 27 (2022) Page19 of 20
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Conclusion

We defined entropy of a classical channel axiomatically and concretely.

Axiomatically:

1. Axiomatic definition of classical state entropy and majorization.

2. Extension of majorization to classical channels.

3. Axiomatic definition of classical channel entropy follows from extended majorization.

Concretely:

1. Antitone of the extended majorization can be extended from a state entropy.

2. An extension of 𝛼-Rényi entropy to a channel entropy.
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