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Abstract

In this report, I provide an algorithm for solving semidefinite programming (SDP) using sampling
from the oracle of a Gibbs state. The algorithm solves an SDP by solving the dual problem of the
SDP[1, 2, 3]. The algorithm takes an oracle of constraint matrices as its input and outputs a probability
distribution sampling from a Gibbs state associated with the constraints. The runtime of this algorithm
is O(

√
nms2R32/δ18) when m is the number of constraint matrices, n is the dimension of the constraint

matrices. I will provide a derivation of the lower bound for the quantum algorithm. Additionally, I will
also give examples of this algorithm in a low-dimensional case and a linear programming case.
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Notations

In this report, C,X ∈ Rn×n, y ∈ Rm, and {Aj}j∈[m] always represent the description of a semidefinite
program. Matrices are represented with uppercase Roman letters; vectors are represented with lowercase
bold typeface. i, j, k, l are indices; one with subscript are marked or random indices. A number in a square
bracket, e.g. [m], denotes the set of m indices.

1 Semidefinite program

A semidefinite program (SDP) is an extension of the linear program. An objective is to find a matrix X,
instead of a vector in linear programming, that maximizes a certain objective function of the form Tr(CX).
Formally, the SDP is given by

maxTr [CX]

∀j ∈ [m] Tr [AjX] ≤ bj

X ≥ 0, (1)

where the inequality X ≥ 0 denotes X being positive semidefinite (PSD). This form of SDP is called Primal
SDP, or P-SDP. C,Aj and X are Hermitian matrix of size n×n. The matrix C is called an objective matrix
and Aj are constraint matrices each with corresponding constraint value bj . Each SDP has its dual of the
form

minb · y
m∑
j=1

yjAj ≥ C

y ≥ 0 (2)

where the inequality
∑m

j=1 yjAj ≥ C denotes
∑m

j=1 yjAj − C ≥ 0 is a PSD matrix. This is called the dual
SDP, D-SDP.

1.1 Feasibility and Duality

Definition 1.1 (Feasible solution). X is a primal feasible solution if it satisfies the constraints

∀j ∈ [m] tr (AjX) ≤ bj

X ≥ 0.

Moreover, the value Tr[CX] is feasible for this SDP. Similarly, y is a dual feasible solution if it satisfies the
constraints

m∑
j=1

yjAj ≥ C

y ≥ 0.
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Proposition 1.2. If X,y are primal and dual feasible solutions respectively with objective values αp and
αd respectively, then αp ≤ αd.

Proof. Since y is dual feasible, then, ∑
j

yjAj ≥ C

(X is PSD)→
∑
j

yjAjX ≥ CX

Tr

∑
j

yjAjX

 ≥ Tr [CX]. (3)

Since X is primal feasible, then we have

∑
j

bjyj ≥ Tr

∑
j

yjAjX

 ≥ Tr [CX]. (4)

Equivalently, b · y ≥ Tr[CX] and αp ≤ αd.

Definition 1.3. An SDP satisfies a strong duality if its primal and dual optimal values coincide.

Not all SDPs have a strong duality with their dual. The algorithm in this report assumes that the strong
duality is satisfied. If the strong duality is satisfied, there is a way to check if X is feasible by trying to come
up with a counter-example, as stated in the next proposition.

Proposition 1.4. Given a candidate primal solution X and a guessed α, if there is a vector y ≥ 0 such that

b · y ≤ α and (5)

Tr

∑
j

yjAjX

 ≥ Tr [CX] (6)

then X is either infeasible or X is feasible and the optimal value has value at most α.

The problem with this is to exhaust all possible y. There is a workaround by assuming that there exists
an oracle that can approximately exhaust these vectors. It will be discussed in the section 2.2.

Proof. X is either feasible or infeasible. From the conditions in equations (5) and (6), if X is feasible then

α ≥ b · y ≥
∑
j

Tr[AjX]yj ≥ Tr[CX].

The last inequality is given by
∑m

j=1 Ajyj ≥ C. This shows that if X is feasible then it has value at most
α. The other case is X is infeasible, which there is nothing to prove.

Theorem 1.5 (Sufficient condition for strong duality, from [4]). Assume both primal and dual have feasible
solutions. Then αp ≥ αd, where αp and αd are the optimal values to the primal and dual respectively.
Moreover, if the primal has a strictly feasible solution (a solution X such that X > 0 or X is positive
definite) then
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1. The dual optimum is attained (which is not always the case for SDPs)

2. αp = αd.

Similarly, if the dual is strictly feasible, then the primal optimal value is achieved and equals the dual
optimal value. Hence, if both the primal and dual have strictly feasible solutions, then both αp and αd are
attained.

Lemma 1.6 (Sufficient condition for strong duality 2, from [5]). Assume (X,y) are primal and dual feasible
solutions of (SDP-P) and (SDP-D), respectively, that satisfy the complementary slackness condition(

C −
m∑
i=1

Aiyi

)
X = 0 (7)

(and thus achieve the same cost Tr[CX] = b · y. Then, (X,y) are primal and dual optimal solutions of the
SDP problem.

2 Classical algorithm for semidefinite programming

The algorithm solves either SDP-P or SDP-D. To solve an SDP, the algorithm turns the SDP into a feasibility
problem and uses a search algorithm to guess the optimal value α.

Before we dive into technical details. The intuitive idea of the algorithm for solving semidefinite pro-
gramming is as follows

1. Guess α the optimal value.

2. Find X such that it is feasible and give its value

(a) If can find, then guess a higher value for α.

(b) If cannot find it, then guess a lower value for α.

To check if there is such X, aka feasibility testing, the algorithm for this is as follows

1. Initially guess X ∝ I

2. Find y such that it satisfies the equation (6).

(a) This step uses an oracle in the Definition 2.6

3. If cannot be found, then X is a feasible solution and the optimal value is higher.

4. If can find such y, then X may not be feasible and we use the amount,
∑m

j=1 yj(t)Aj −C to reduce X

accordingly.

5. Repeat with the new X.

Firstly, let us consider how one can use an algorithm called matrix weight multiplication to reduce X

and adjust X according to
∑m

j=1 yj(t)Aj − C.
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2.1 Matrix multiplicative weights algorithm

The matrix multiplicative weight algorithm (MMW) is an important subroutine in the classical algorithm
for SDP. The goal of the algorithm is as follows.

Input: Loss matrices {M(t)}t∈[T ] feeding to the algorithm one at a time.

Output: A density operator such that Tr[
∑

t M(t)P ] is close to the lowest eigenvalue of M(t) by a function
of η, T and N .

Algorithm 1 Multilicative weights algorithm
Require: Parameter η ≤ 1, number of rounds T .
1: W (1)← I
2: for t = 1, . . . , T do
3: Set a density operator P (t) = W (t)/Tr

[
W (t)

]
4: Recieve M (t)

5: Update the weight matrix W with

W (t+1) = exp

(
−η

t∑
τ=1

M (τ)

)
.

6: end for

Theorem 2.1. For any sequence of loss matrix M (1),M (2), . . . ,M (T ), the MMW generates density matrices
P (1), . . . , P (T ) such that

T∑
t=1

Tr
[
M (t)P (t)

]
− λn

(
T∑

t=1

M (t)

)
≤ η

T∑
t=1

Tr
[
(M (t))2P (t)

]
+

lnn

η
(8)

Corollary 2.2. For any sequence of loss matrix M (1),M (2), . . . ,M (T ), the MMW generates density matrices
P (1), . . . , P (T ) such that

T∑
t=1

Tr
[
M (t)P (t)

]
− λn

(
T∑

t=1

M (t)

)
≤ ηT +

lnn

η
(9)

2.2 Primal-dual algorithm

The algorithms, both classical and quantum, assume the following

• α ≥ 1

• bj ≥ 1 for all j

• ∥Aj∥, ∥C∥ ≤ 1.

Also, these additional bounds are assumed.

Definition 2.3 (Trace bound). For any of the SDPs considered after this, we set A1 = I and b1 = R. This
gives the first condition of feasibility, which is

Tr[X] = R

This R is called a trace bound.
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Definition 2.4 (Dual bound). For any of SDP-D considered after this, we set a constraint that ∥y∥1 ≤ r.

In [3], they proved that one can rescale the problem to satisfy these bounds, solve using their algorithm,
and pullback to be the answer for the original SDP using the following theorem.

Theorem 2.5 (Lemma 2 in [3]). One can sample from a δ-optimal solution of the SDP given by Eq. (2)
(with dimension n, m variables, size parameter R and upper bound r on optimal solution vector) given the
ability to sample from a (δ/r)-optimal solution of the SDP given by Eq. (2) (with dimension n + 1,m + 1

variables and size parameter 2R+ 1) in which bi ≥ 1 for all i ∈ [m].

The algorithm assumes that there exists an oracle that outputs y such that it flags where X may violate
the constraint. If this oracle fails to output y, then X is feasible (see the proposition 1.4).

Definition 2.6. Oracle is an algorithm that, given a primal candidate solution X ⪰ 0, either outputs y

from a convex polytope

P (X) := {y ∈ Rm :b · y ≤ α

Tr

 m∑
j=1

yjAjX

 ≥ Tr[CX]

y ≥ 0},

or outputs fail.

Definition 2.7 (Oracle width-bound). The width of oracle is the smallest non-negative w such that every
primal candidate X, the vector returned by the Oracle satisfies

∥∥∥∑j Ajyj − C
∥∥∥ ≤ w

Proposition 2.8. w ≤ r + 1

Proof.

w = sup
y∈P(X)

∥∥∥∥∥∥
∑
j

yjAj − C

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥
∑
j

yjAj

∥∥∥∥∥∥+ ∥C∥
≤
∑
j

yj∥Aj∥+ ∥C∥

≤
∑
j

yj + 1 = r + 1

The following algorithm is firstly shown in [1] and rephrased in [6]

Theorem 2.9 (from [1]). Suppose that the primal-dual SDP algorithm is run with the parameter settings
η = ε

2ρR and T =
⌈
4ρ2R2 ln(n)

ε2

⌉
, and assume that ORACLE never fails in any of the T iterations. Then the

dual solution output, y, is feasible with objective value at most α+ ε

2.3 Complexity

The table 1 is from [1] showing the complexity of the algorithm 2. Notice that all complexity is larger than
O(
√
nm).
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Algorithm 2 Primal-dual algorithm for feasibility SDP
Require: Trace bound R, the dual bound r, parameteres η and T for MMW. Constraint matrices and an

objective matrix {Aj}j∈[m], C.
1: Take ρ(1) := I/n
2: Set w = r + 1
3: for t=1,2,. . . ,T do
4: X(t) = Rρ(t)
5: y(t)← Oracle(X(t)). If Oracle fails, abort. ▷ Check if there is a dual feasible solution with this X.
6: Set M(t) = 1

w

(∑m
j=1 Ajyj(t)− C

)
▷ If there is such y, X may not be primal feasible.

7: Set H(t) =
∑t

τ=1 M(t), and W (t) = exp (−ηH(t))
8: Set ρ(t+ 1)←W (t)/Tr[W (t)] ▷ (the t-th element of MMW)
9: end for

10: If Oracle never fails in any of T rounds, output the dual solution ȳ = 1
T

∑T
t=1 y(t) +

ε
R ê1

Table 1: Complexity of algorithm in each specific type of SPD. The table is taken directly from [1]

Problem Previous Best:
O(
√
log n) apx

Algorithm 2:
O(
√
log n) apx

Algorithm 2:
O(log n) apx

Undir. SPARSEST CUT Õ
(
n2
)

Õ
(
n2
)

Õ
(
m+ n1+o(1)

Undir. BALANCED SEPARATOR Õ
(
n2
)

Õ
(
n2
)

Õ
(
m+ n1+o(1)

)
Dir. SPARSEST CUT Õ

(
n9.5

)
Õ
(
m1.5 + n2+o(1)

)
Õ
(
m1.5

)
Dir. BALANCED SEPARATOR Õ

(
n9.5

)
Õ
(
m1.5 + n2+o(1)

)
Õ
(
m1.5

)
MIN UNCUT Õ

(
n9.5

)
Õ
(
n4
)

-
MIN 2CNF DELETION Õ

(
n9.5

)
Õ
(
nm1.5 + n4

)
-

3 Quantum algorithm

The quantum algorithm approaches SDP similarly to the Primal-dual algorithm. It also uses the same
assumption. The quantum algorithm replaces matrix exponentiation with quantum Gibbs state preparation
and the Oracle with the estimation using samples from the distribution of the Gibbs state.

3.1 Quantization ideas

In this subsection, we will discuss the following points.

1. One can prepare a thermal state (the Gibbs state) instead of doing matrix exponentiation in the
multiplicative weight method.

2. One can create an approximate Oracle quantumly using Gibbs sampling method.

3.1.1 Gibb States

A Gibbs state, ρ, is a quantum state of the form

ρ =
exp (βH)

Tr[exp (βH)]
(10)

where H is a Hermitian matrix and β is a positive parameter. Notice that this is similar to the state we
required in MMW and the primal-dual algorithm. Preparing Gibbs state can be done with an oracle that
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gives access to the matrix elements of the matrix H. For this algorithm, the oracle is working on a sparse
matrix and the oracle is defined as follows.

Definition 3.1 (Oracle for matrix elements). Given a list of matrix {A1, . . . , Am, Am+1 = C}. An oracle
for matrix elements of these matrices Aj is a quantum oracle that maps

|j, k, l, z⟩ 7→
∣∣j, k, l, z ⊕ (Aj)kfjk(l)

〉
(11)

where Aj is an s-spares matrix, fjk is a function mapping l ∈ [s] to an index of the l-th nonzero index of
row k of the matrix Aj .

Definition 3.2 (GibbsSampler). Given H a Hamiltonian and O[H] an oracle for its entries. GibbsSampler(O[H], ε)

is a quantum operation that outputs a state ρ such that ∥ρ− eH/Tr eH∥ 1 ≤ ε.

The following proposition confirms that we can use queries bounded by O(
√
dimH) to prepare for a

Gibbs state. It appears in the proof of corollary 17 of [3].

Proposition 3.3. One can prepare an ε-approximation th the Gibbs state of H, eβH/Tr
[
eβH

]
, quantumly

using an quantum oracle inquiring elements of H. The combined query and two-qubit gates complexity is
of the order

O

(
1

ε

√
dim(H)βs′

)
, (12)

when H is s′-spares and ∥H∥ ≤ 1. (each column or row has at most s′ nonzero elements)

Remark. Given any ∥H∥ ≥ 1 one can rescale H to βH ′ with ∥H ′∥ ≤ 1.

Definition 3.4. Given a quantum state ρ, define h(ρ, λ, µ)

h(ρ, λ, µ) =

m∑
i=1

ri |i⟩⟨i| ,

when ri = λTr [Aiρ] + µbi.

Corresponding to h, define a truncated version as

h̄(ρ, λ, µ) =

m∑
i=1

r̄i |i⟩⟨i| , (13)

where r̄i is a rounding of ri to the precision of δ/(56R2).

Remark. In the algorithm, the Hamiltonian is noted by h̄(ρ, k) which is defined as

h̄(ρ, k) := h̄
(
ρ,− ε

8R2
k,− ε

8R2
(γ − k)

)
where γ :=

⌈
8
ε2 log(m)R2

⌉
≥: k and for an ε > 0 defined in the algorithm.

3.1.2 A quantum counterpart of the Oracle

There are two tasks in the Oracle

1. come up with a suitable q that may be in P
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2. evaluate if q is in this polytope

First, in the algorithm, the candidate q is sampled from the GibbsSampler
(
h̄(ρ, k)

)
. Then, we sample

i1, i2, . . . , im independently from q, the algorithm approximately computes

1

M

∑
j∈[M ]

Tr
[
Aijρ

]
. (14)

To understand what happens here, consider the limit M →∞,

lim
M→∞

1

M

∑
j∈[M ]

Tr
[
Aijρ

]
=
∑
j∈[m]

qj Tr[Ajρ]

this is corresponding to the sum over yj Tr[Ajρ] in the Oracle. Another term calculated from the sample is

1

M

∑
j∈[M ]

bij . (15)

Similar to the previous calculation,

lim
M→∞

1

M

∑
j∈[M ]

bij =
∑
j∈[m]

qjbj = q · b.

As seen in the quantum algorithm, these two terms will be compared to another two terms in inequalities. A
lemma in [3] shows that if the Oracle does not fail then comparing terms in equations 14 and 15 will output
a vector q approximating the output of Oracle.

3.2 The algorithm

The algorithm 3 is given in [3] and [2].

Theorem 3.5. The algorithm runs in time

Õ

(
R21

δ11
Gh̄GM

)
+O

(
R13

δ5
TMeas

)
when Gh̄ is a maximum number of queries that GibbsSampler

(
O(h̄(ρ(t), k)), ε/4

)
use over any t ≤ T , GM is

the number of queries for GibbsSampler
(
O
[
−ε′

∑
j∈[t]M(j)

]
, ε/4

)
, and TMeas is an estimating time for each

of Tr[Aiρ(t)] and Tr[Cρ(t)].
The algorithm fails with probability at most

O

((
R

δ

)18

(nm)10 exp
(
− logξ(nm)

))
(16)

The Gibbs sampler is considered here as a black box that uses the number of queries to prepare a Gibbs
state with ε-close. The number of queries is bounded by

O
(√

dim(H)βs′/ε
)

as in proposition 3.3. There are two inputs for GibbsSampler, one is the Hamiltonian h̄(ρ), another one is
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Algorithm 3 Quantum Primal-Dual Algorithm for SDPs
Require: Trace bound R, guessed optimal value α, multiplicative error δ, a parameter ξ > 0, description

of the problem {A1, . . . , Am, C} such that ∥Aj∥, ∥C∥ ≤ 1 and {b1, . . . , bm} such that bi ≥ 1.
1: Output: y a dual feasible with objective value less than (1 + δ)α, or the label Larger indicating the

optimal objective value is larger than (1− δ)α.
2: Set ρ(1) = I/n.
3: Let ε = δ

28R2 , ε
′ = − ln(1− ε), ▷ Start: set many complicated parameters

4: M = 80 log1+ξ
(
8R2nm/ε

)
/ε2,

5: L = 80 log1+ξ(nm)/εε and
6: Q = 106R6 ln2+ξ(nm)/δ4. ▷ End: set many complicated parameters
7: for t=1,2,. . . , T = 500R3 ln(n)

δ2 . do
8: Start: analog to the Oracle in classical algorithm.
9: Set y(t) =

(
0 . . . 0

)T
.

10: for k = 1, . . . , γ do
11: for N = 1, . . . , ⌈α/ε⌉ do
12: Create M copies of q← GibbsSampler

(
O[h̄(ρ(t), k)], ε/4

)
13: Sample i1, . . . , iM independently from q.
14: Compute estimates eij ≈ Tr

[
Aijρ(t)

]
and f ≈ Tr[Cρ] with accuracy ε/2.

15: Check if q is in the polytope
16: if 1

M

∑
j∈[M ] eij ≥

f
εN − ε and 1/M

∑
j∈[M ] bij ≤ α/(εn) +Rε, then.

17: Admit kt ← k, and Nt ← N , q(t) = q and y(t) = εNq(t).
18: end if
19: end for
20: end for
21: End: Analog to the Oracle.
22: If y = 0, abort and label Larger.
23: Start: analog to MMW
24: Create Q+ 1 copies of q(t)← GibbsSampler

(
O
[
h̄(ρ(t), k(t))

]
, ε/4

)
25: Sample i1, . . . , iQ independently from q(t).
26: Set M(t) =

(
εN(t)Q−1

∑Q
j=1 Aij − C + 2αI

)
/4α.

27: Set C(t) := 10 log(m)
ε2

(
γα
ε M +Q

)
Gh̄

(
ρ(t)
)
+ 2γα

ε ML

28: Set create C(t) copies of ρ(t+ 1)← GibbsSampler
(
−ε′
(∑

τ∈[t] M(τ), ϵ/4
))

29: End: analog to MMW
30: end for
31: Output: ∥ȳ∥1 and a sample from ȳ/∥ȳ∥1 with ȳ = δα

2Re1 +
1
T

∑T
t=1 y

(t)

the constraint violation M(t). The first h̄ has a dimension equal to the number of constraints m and the
second has a dimension equal to the n. We will state the query complexity here, the details derivation can
be found in lemma 17 of [3],

The query complexity is Õ(
√
nms2R32/δ18).
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3.3 Lower bound

Consider the following two SDPs

R = 1 A1 = I

bj = 1 ∀j ∈ [m]

∃!i0 ∈ [n] Cii = 1 Ckl = 0 elsewhere

and either

1. ∃!j0 ∈ [m] such that (Aj0)i0i0 = 2 and elements of Aj0 equal to zero elsewhere. All other matrices are
zero matrices.

2. All the matrices Aj are zero matrices ∀j > 1.

Solving these two problems leads to two different results. The first case has the optimal solution X =

|i0⟩⟨i0| /2 and y = |j0⟩⟨j0| with the objective value 1/2. While the second case X = |i0⟩⟨i0| and y = |1⟩⟨1|
with the objective value 1. Given an oracle that gives out the optimal solution, one can query the oracle with
complexity n to find what i0 and j0. This is solving a search problem that quantumly requires O(

√
n+
√
m)

queries to complete with bounded error. The algorithm is able to come up with an approximate solution that
can distinguish these two cases with bounded errors. Therefore, the algorithm requires at least Ω(

√
n+
√
m)

queries to the oracles to complete.

4 Conclusion

Semidefinite programming can be solved quantumly using the quantum version of the Primal-dual approach
to solve semidefinite programming. The algorithm relies on access to Gibb sampling and the oracles inquiring
elements of a matrix. The query complexity of this algorithm is O(

√
nm) when n is a dimension of the matrix

and m is the number of constraints. There is room for improvement as the lower bound is O(
√
n+
√
m).
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